Brückenbindung. Für den Zusammenhalt der Molekeln im Kristallgitter kommen wohl hauptsächlich die VAN DER WAALS'schen Kräfte in Frage.

Herrn Prof. Dr. E. O. FISCHER (München) danken wir für die Anregung zu dieser Arbeit und für die Herstellung der Substanz bestens. Die KOMMISSION ZUR FÖRDERUNG DER WISSENSCHAFT-LICHEN FORSCHUNG (Projekt Nr. 386) ermöglichte in dankenswerter Weise die Anschaffung und den Betrieb der IBM 1620-Rechenanlage.

## ZUSAMMENFASSUNG

Naphtalin-chromtricarbonyl kristallisiert in 2 Modifikationen: a) als Schindeln mit a = 12,37, b = 6,58, c = 7,36 Å,  $\alpha = 107^{\circ}22'$ ,  $\beta = 96^{\circ}44'$ ,  $\gamma = 92^{\circ}50'$ , P1 oder P1, Z = 2, und b) als Nadeln mit a = 13,98, b = 11,71, c = 6,87 Å,  $P2_12_12_1$ , Z = 4. Von letzterer wurde mittels einer 3d-PATTERSON-Synthese, gefolgt von mehreren 3d-FOURIER- und -Differenz-FOURIER-Synthesen und Kleinste-Quadrate-Verfeinerungen die vollständige Struktur bestimmt (R = 8,5%). Die C-C-Abstände im ebenen Naphtalinring von  $1,37_5-1,44_7$  Å weisen gegenüber denjenigen im Naphtalin selber  $(1,36_4-1,42_7$  Å) keine wesentliche, durch den Cr(CO)\_3-Komplex bedingte Auflockerung auf. Keine Carbonylgruppe liegt in der "langen" Spiegelebene der Naphtalinmolekel, sondern jede ist aus ihr herausgedreht. Die zwischenmolekularen Abstände von 3,34-3,71 Å fallen in den Bereich schwacher (CH ... O)-Wechselwirkungen.

> Abteilung für Kristallographie und Strukturlehre am Mineralog.-Petrograph. Institut der Universität Bern

## LITERATURVERZEICHNIS

- E. O. FISCHER, K. OEFELE, H. ESSLER, W. FRÖHLICH, J. P. MORTENSEN & W. SEMMLINGER, Chem. Ber. 91, 2763 (1958).
- [2] V. KUNZ, «Die Kristall- und Molekülstruktur des Naphthalin-chromtricarbonyl C<sub>10</sub>H<sub>8</sub>Cr(CO)<sub>3</sub>», Diss. Univ. Bern, 1967.
- [3] D. W. J. CRUICKSHANK & R. A. SPARKS, Proceedings Royal Soc. A, 258, 270 (1960).
- [4] P. E. BAIKIE & O. S. MILLS, Chem. Commun. 1966, No. 19, 683.

107. Propriétés thermodynamiques des mélanges binaires. Chaleurs de mélange des *n*-alcanes ainsi que de leurs isomères par J. G. Fernández-García et Ch. G. Boissonnas

(3 IV 67)

Les chaleurs de formation des mélanges d'alcanes normaux ont fait l'objet de nombreuses mesures. Nous citerons en particulier celles qui se rapportent aux systèmes hexadécane-hexane [1] [2], hexadécane-heptane [2] [3], hexadécane-octane [2] [3] et dodécane-hexane[4].

A notre connaissance, de telles mesures n'ont été faites que sur deux systèmes dont l'un des composants soit un alcane ramifié, à savoir les couples hexadécane-isooctane à  $25^{\circ}$  [2] et octane-tetraéthylméthane à  $50^{\circ}$  [5].

Comparant ces deux derniers mélanges aux précédents, on constate que la chaleur de formation est différente si l'un des composés normaux est remplacé par son isomère

| Composant C <sub>6</sub> H <sub>14</sub> | $x_{ m dod\acute{e}c.}$ | $\Delta H$ J/mole | $x_{ m dod\acute{e}c.}$ | ⊿H<br>J/mole | $x_{ m dod\acute{e}c.}$ | ⊿H<br>J/mole |  |
|------------------------------------------|-------------------------|-------------------|-------------------------|--------------|-------------------------|--------------|--|
|                                          | 10°                     |                   | 20°                     |              | <b>3</b> 0°             |              |  |
| hexane                                   | 0,2813                  | 48,2              | 0,2831                  | 36,0         | 0,1880                  | 19,1         |  |
|                                          | 0,2819                  | 46,6              | 0,3731                  | 42,4         | 0,3984                  | 28,8         |  |
|                                          | 0,3428                  | 53,0              | 0,4441                  | 45,3         | 0,4295                  | 29,9         |  |
|                                          | 0,4066                  | 54,4              | 0,4805                  | 45,8         | 0,4771                  | 30,7         |  |
|                                          | 0,4577                  | 58,7              | 0,4893                  | 45,4         | 0,4876                  | 31,1         |  |
|                                          | 0,4980                  | 59,9              | 0,5082                  | 45,2         | 0,4970                  | 31,3         |  |
|                                          | 0,5019                  | 57,0              | 0,5102                  | 46,3         | 0,5216                  | 31,2         |  |
|                                          | 0,5273                  | 59,9              | 0,5228                  | 43,8         | 0,5219                  | 31,3         |  |
|                                          | 0,5360                  | 58,6              | 0,5364                  | 44,7         | 0,5394                  | 30,9         |  |
|                                          | 0,5885                  | 56,9              | 0,5474                  | 44,6         | 0,5634                  | 30,4         |  |
|                                          | 0,6131                  | 55,1              | 0,5504                  | 44,0         | 0,5790                  | 29,4         |  |
|                                          | 0,6262                  | 56,4              | 0,5621                  | 45,0         | 0,6052                  | 28,6         |  |
|                                          | 0,6448                  | 52,4              | 0.5714                  | 44,9         | 0,6159                  | 29.4         |  |
|                                          | 0.6991                  | 49.6              | 0.5815                  | 45.1         | 0.6987                  | 25.8         |  |
|                                          |                         | ,                 | 0,6218                  | 42,6         | 0,7140                  | 25,3         |  |
| méthyl-2-pentane                         | 0,2232                  | 74,2              | 0,1685                  | 47,9         | 0,2465                  | 49,3         |  |
|                                          | 0,2305                  | 74,9              | 0,1697                  | 48,6         | 0,2863                  | 53,8         |  |
|                                          | 0,3476                  | 93,8              | 0,1790                  | 52,2         | 0,3142                  | 57,9         |  |
|                                          | 0,3624                  | 97,0              | 0,2853                  | 70,2         | 0,4029                  | 64,1         |  |
|                                          | 0,4302                  | 99,4              | 0,3219                  | 71,7         | 0,4788                  | 65,5         |  |
|                                          | 0,4523                  | 102,9             | 0,3417                  | 78,2         | 0,4731                  | 65,3         |  |
|                                          | 0,4667                  | 102,1             | 0,4052                  | 82,9         | 0,4881                  | 64,9         |  |
|                                          | 0,4848                  | 103,6             | 0,4325                  | 84,4         | 0,4930                  | 66,4         |  |
|                                          | 0,4957                  | 104,0             | 0,4795                  | 83,7         | 0,5091                  | 66,8         |  |
|                                          | 0,5132                  | 101,6             | 0,5044                  | 85,5         | 0,5360                  | 65,2         |  |
|                                          | 0,5771                  | 96,6              | 0,5465                  | 84,6         | 0,5404                  | 65,3         |  |
|                                          | 0,5836                  | 100,9             | 0,5467                  | 85,6         | 0,5405                  | 65,1         |  |
|                                          | 0,6202                  | 96,2              | 0,5840                  | 82,9         | 0,5421                  | 65,2         |  |
|                                          | 0,6566                  | 89,0              | 0,6088                  | 82.8         | 0,5644                  | 65.0         |  |
|                                          | 0,7022                  | 84.3              | 0.6225                  | 83.2         | 0.5924                  | 62.8         |  |
|                                          | 0,7400                  | 76.0              | 0.7015                  | 72.1         | 0.6200                  | 62.5         |  |
|                                          |                         |                   | 0.7327                  | 66.3         | 0.6373                  | 60.9         |  |
|                                          |                         |                   | 0.7264                  | 69.4         | 0.6539                  | 61.6         |  |
|                                          |                         |                   | •,•==•                  | 05,1         | 0.6541                  | 61.9         |  |
|                                          |                         |                   |                         |              | 0,7405                  | 50,5         |  |
| méthyl-3-pentane                         | 0,2857                  | 83,9              | 0,2820                  | 70,3         | 0,2836                  | 51,8         |  |
|                                          | 0,3208                  | 90,2              | 0,2848                  | 70,0         | 0,3670                  | 57,2         |  |
|                                          | 0,3430                  | 92,4              | 0,3421                  | 76,2         | 0,4692                  | 60,5         |  |
|                                          | 0,4002                  | 96,6              | 0,3570                  | 75,0         | 0,4763                  | 61,1         |  |
|                                          | 0,4468                  | 103,1             | 0,4641                  | 81,1         | 0,4831                  | 60,2         |  |
|                                          | 0,4497                  | 101,5             | 0,4712                  | 82,5         | 0,4958                  | 60,0         |  |
|                                          | 0,4782                  | 103,5             | 0,5002                  | 82,2         | 0,5071                  | 61,6         |  |
|                                          | 0,4919                  | 103,3             | 0,5045                  | 83,9         | 0,5072                  | 60,4         |  |
|                                          | 0,4963                  | 104,0             | 0,5146                  | 82,1         | 0,5077                  | 62,1         |  |
|                                          | 0,5137                  | 104,8             | 0,5281                  | 83,2         | 0,5149                  | 61,7         |  |
|                                          | 0,5163                  | 104,7             | 0,5351                  | 84,2         | 0,5181                  | 62.3         |  |
|                                          | 0,5576                  | 100,8             | 0,5473                  | 83,4         | 0,5268                  | 62.3         |  |
|                                          | 0,5803                  | 100,2             | 0,5765                  | 78.1         | 0,5301                  | 61.9         |  |
|                                          | -<br>                   |                   |                         |              |                         | ,-           |  |

Tableau 1. Systèmes dodécane – les divers isomères de  $C_6H_{14}$ 

| Tableau 1 (suite)                        |                                                           |       |                                                           |       |              |      |  |  |  |  |
|------------------------------------------|-----------------------------------------------------------|-------|-----------------------------------------------------------|-------|--------------|------|--|--|--|--|
| Composant C <sub>6</sub> H <sub>14</sub> | $x_{\text{dodéc.}}$ $\Delta H$ $x_{\text{dodéc.}}$ J/mole |       | $\frac{\Delta H}{\text{J/mole}} \qquad x_{\text{dodéc.}}$ |       | ⊿H<br>J/mole |      |  |  |  |  |
|                                          | 10°                                                       |       | 20°                                                       |       | 30°          |      |  |  |  |  |
| méthyl-3-pentane                         | 0,6263                                                    | 94,3  | 0,6087                                                    | 74,6  | 0,5370       | 61,5 |  |  |  |  |
| <b>,</b> 1                               | 0,6494                                                    | 90,9  | 0,6635                                                    | 68,8  | 0,5719       | 59,0 |  |  |  |  |
|                                          | 0,7231                                                    | 81,7  | 0,6834                                                    | 68,4  | 0,5791       | 62,9 |  |  |  |  |
|                                          |                                                           |       | 0,7061                                                    | 69,6  | 0,5841       | 61,0 |  |  |  |  |
|                                          |                                                           |       | 0,7179                                                    | 68,8  | 0,6011       | 58,8 |  |  |  |  |
|                                          |                                                           |       | 0,7307                                                    | 64,1  | 0,6186       | 60,6 |  |  |  |  |
|                                          |                                                           |       | 0,7430                                                    | 63,9  | 0,6508       | 58,6 |  |  |  |  |
|                                          |                                                           |       |                                                           |       | 0,7236       | 52,7 |  |  |  |  |
| diméthyl-2, 2-butane                     | 0,1728                                                    | 97,7  | 0,2554                                                    | 105,5 | 0,2208       | 73,2 |  |  |  |  |
| •                                        | 0,2429                                                    | 116,4 | 0,2745                                                    | 108,4 | 0,2885       | 89,9 |  |  |  |  |
|                                          | 0.0054                                                    | 101 8 | 0.0501                                                    | 100.0 | 0.0011       | 01.2 |  |  |  |  |

|                      |        |       |        |       | 0,7236          | 52,7  |
|----------------------|--------|-------|--------|-------|-----------------|-------|
| diméthyl-2, 2-butane | 0,1728 | 97,7  | 0,2554 | 105,5 | 0,2208          | 73,2  |
|                      | 0,2429 | 116,4 | 0,2745 | 108,4 | 0,2885          | 89,9  |
|                      | 0,2954 | 131,7 | 0,3531 | 128,9 | 0,2911          | 91,3  |
|                      | 0,3132 | 133,6 | 0,3575 | 126,6 | 0,3787          | 102,4 |
|                      | 0,3475 | 142,7 | 0,3869 | 128,0 | 0,4046          | 106,2 |
|                      | 0,3698 | 146,4 | 0,4216 | 128,1 | 0,4338          | 106,0 |
|                      | 0,4310 | 154,1 | 0,4273 | 127,0 | 0,4354          | 106,4 |
|                      | 0,4688 | 154,1 | 0,4434 | 127,2 | 0 <b>,44</b> 60 | 106,4 |
|                      | 0,5059 | 156,3 | 0,4560 | 129,7 | 0,4927          | 107,2 |
|                      | 0,5113 | 154,4 | 0,4858 | 133,2 | 0,4975          | 107,6 |
|                      | 0,5662 | 153,7 | 0,4922 | 128,7 | 0,5028          | 107,2 |
|                      | 0,5895 | 148,6 | 0,5117 | 129,0 | 0,5117          | 107,3 |
|                      | 0,6129 | 141,6 | 0,5164 | 125,2 | 0,5422          | 104,6 |
|                      | 0,6426 | 141,7 | 0,5229 | 127,4 | 0,5757          | 106,1 |
|                      | 0,6722 | 132,4 | 0,5264 | 129,4 | 0,5837          | 101,9 |
|                      | 0,7158 | 120,4 | 0,6103 | 118,7 | 0,6179          | 103,1 |
|                      | 0,7619 | 111,3 | 0,6305 | 116,0 | 0,6581          | 94,7  |
|                      | -      | -     | 0,6592 | 112,9 | 0,6730          | 88,2  |
|                      |        |       | 0,6657 | 111,3 | 0,7133          | 81,2  |
|                      |        |       | 0,6956 | 105,0 | 0,7497          | 76,8  |
|                      |        |       |        |       | 0,7757          | 71,5  |
| diméthyl-2, 3-butane | 0,1943 | 80,3  | 0,2424 | 72,7  | 0,2819          | 59,0  |
|                      | 0.2181 | 87.1  | 0,3408 | 86,6  | 0,2880          | 59,1  |
|                      | 0.2555 | 92.0  | 0.4067 | 92.6  | 0,4201          | 73,1  |
|                      | 0.3006 | 100.4 | 0,4290 | 93,4  | 0,4541          | 74,7  |
|                      | 0,3206 | 107.7 | 0,4360 | 95,2  | 0,4761          | 74,4  |
|                      | 0.3881 | 113.0 | 0.5037 | 96,0  | 0,5131          | 76,1  |
|                      | 0.4310 | 116.4 | 0.5058 | 97.1  | 0.5393          | 76.3  |
|                      | 0.4521 | 118.0 | 0.5084 | 97.2  | 0.5406          | 75.9  |
|                      | 0.4623 | 119.5 | 0.5416 | 92.9  | 0.5474          | 73.3  |
|                      | 0.4809 | 121.4 | 0.5684 | 94.9  | 0.5573          | 75.3  |
|                      | 0.4957 | 122.1 | 0.5736 | 92.8  | 0.5972          | 72,3  |
|                      | 0.5104 | 118.5 | 0.6046 | 91.0  | 0.6210          | 72.9  |
|                      | 0.5210 | 119,1 | 0.7087 | 80.5  | 0.6590          | 68.4  |
|                      | 0.5508 | 115.4 | -,     |       | 0.6610          | 69.1  |
|                      | 0.5627 | 113.1 |        |       | 0,6896          | 61.6  |
|                      | 0,5908 | 114.3 |        |       | *,- ** *        | , •   |
|                      | 0.6678 | 105.8 |        |       |                 |       |
|                      | 0.6869 | 105.3 |        |       |                 |       |
|                      | 0.7154 | 97.1  |        |       |                 |       |
|                      | 0 7927 | 81.9  |        |       |                 |       |

ramifié. Ainsi, la chaleur de formation du mélange isooctane-hexadécane est plus grande (il s'agit toujours, comme pour les alcanes normaux, d'une absorbtion de chaleur) que celle du mélange *n*-octane-hexadécane. Au contraire, la chaleur de formation du système tétraéthylméthane-octane présente un comportement tout à fait anormal: écart très faiblement positif dans la tension de vapeur ( $\Delta G > 0$ ) combiné avec dégagement de chaleur lors du mélange. Il semble que le mélange s'accompagne d'une diminution du nombre des configurations par rapport à ce qui se présenterait pour une solution idéale, en d'autres termes à une tendance à l'association entre le tétraéthyl-méthane et l'octane.

Des mesures isolées ne pouvant conduire à une conclusion, nous avons pensé qu'il serait intéressant de mesurer la chaleur absorbée lors du mélange d'un *n*-alcane avec les isomères d'un autre alcane. Ainsi, nous avons choisi d'étudier systématiquement, à  $10^{\circ}$ ,  $20^{\circ}$  et  $30^{\circ}$ , les solutions du dodécane dans l'hexane et ses isomères, méthyl-2-pentane, méthyl-3-pentane, diméthyl-2, 2-butane et diméthyl-2, 3-butane, ainsi que dans le méthyl-2-pentène-1. A ceci nous avons ajouté, pour la température de  $20^{\circ}$ 

| ${}^{\mathcal{X}}\mathrm{dod\acute{e}c}.$ | △H<br>J/mole | $x_{ m dod\acute{e}c.}$ | ${\it \Delta H} \ J/{ m mole}$ | x <sub>dodéc</sub> . | ${\it \Delta H} \ J/{ m mole}$ |  |
|-------------------------------------------|--------------|-------------------------|--------------------------------|----------------------|--------------------------------|--|
| 0,3701                                    | 128,4        | 0,4783                  | 136,9                          | 0,5627               | 128,6                          |  |
| 0,3791                                    | 128,8        | 0,4907                  | 134,2                          | 0,6205               | 119,3                          |  |
| 0,3933                                    | 126,1        | 0,4934                  | 135,7                          | 0,6298               | 113,9                          |  |
| 0,4137                                    | 129,9        | 0,4993                  | 133,5                          | 0,6532               | 113,5                          |  |
| 0,4340                                    | 129,5        | 0,4996                  | 132,1                          | 0,7263               | 96,5                           |  |
| 0,4426                                    | 135,1        | 0,5257                  | 132,9                          |                      |                                |  |

Tableau 2. Système dodécane – hexène-1 à 20°

| $x_{ m doclée.}$ | ${\it \Delta H} \ J/{ m mole}$ | x <sub>dodéc</sub> . | $arDelta H$ $J/{ m mole}$ | $x_{ m dodéc.}$ | $arDelta H \ J/{ m mole}$ |
|------------------|--------------------------------|----------------------|---------------------------|-----------------|---------------------------|
| <br>10°          |                                | 20°                  |                           | 30°             |                           |
| 0,2275           | 98,0                           | 0,4477               | 112,9                     | 0,1067          | 38,1                      |
| 0,2927           | 111,7                          | 0,4783               | 118,4                     | 0,1256          | 45,2                      |
| 0,3979           | 136,3                          | 0,5034               | 122,2                     | 0,1784          | 63,4                      |
| 0,4668           | 139,4                          | 0,5271               | 124,5                     | 0,2276          | 58,0                      |
| 0,4850           | 141,0                          | 0,5649               | 114,6                     | 0,3660          | 94,1                      |
| 0,4942           | 141,4                          | 0,5799               | 117,3                     | 0,3666          | 89,1                      |
| 0,5274           | 140,9                          | 0,6654               | 98,6                      | 0,3690          | 89,1                      |
| 0,6237           | 128,3                          |                      |                           | 0,3741          | 93,8                      |
| 0,7266           | 112,5                          |                      |                           | 0,4032          | 94,3                      |
|                  |                                |                      |                           | 0,4271          | 96,1                      |
|                  |                                |                      |                           | 0,5023          | 101,8                     |
|                  |                                |                      |                           | 0,5104          | 103,0                     |
|                  |                                |                      |                           | 0,5374          | 100,2                     |
|                  |                                |                      |                           | 0,5766          | 99,4                      |
|                  |                                |                      |                           | 0,6072          | 97,9                      |
|                  |                                |                      |                           | 0,6476          | 95,0                      |
|                  |                                |                      |                           | 0,7425          | 77,3                      |
| <br>             |                                |                      |                           | 0,7806          | 71,1                      |

Tableau 3. Système dodécane - méthyl-2-pentène-1

seulement, les chaleurs de formation des solutions de l'hexadécane dans l'hexane [6] et dans les quatre premiers de ses isomères cités ci-dessus, ainsi que des solutions du dodécane dans l'hexène-1.

L'interprétation des résultats sera évidemment différente s'il s'agit de paraffines normales ou ramifiées. En effet, pour des paraffines normales, on peut penser que, en première approximation, seuls des groupes  $CH_2$  ou  $CH_3$  sont en interaction, hypothèse implicitement comprise dans le «principe de congruence» [7] et qui nous a permis





\* lire dodécane-méthyl-2-pentane Fig. 2

\* lire dodécane-méthyl-3-pentane

de prévoir les valeurs de l'énergie interne de mélange [8], ainsi que les volumes de mélange des *n*-alcanes [9]. Cette manière de voir ne peut s'appliquer au cas des isomères. En effet, si on dissout dans un même hydrocarbure du méthyl-2 et du méthyl-3-pentane, les quantités de chaleur absorbées sont différentes. Les écarts sont encore plus grands s'il s'agit d'isomères comprenant deux groupes méthyle latéraux tels que le diméthyl-2, 2-butane ou le diméthyl-2, 3-butane.

Conditions expérimentales. Le calorimètre ainsi que la conduite des mesures, ont été décrits précédemment [6]. La phase vapeur (source d'erreurs importantes) a été éliminée par remplissage du calorimètre avec du mercure. La méthode consiste, en principe, à compenser la chaleur absorbée lors du mélange par un apport simultané de chaleur, dissipée dans une résistance électrique placée à l'intérieur du récipient calorimétrique. La température est suivie au moyen de deux thermistances placées en série. La principale difficulté consiste à compenser exactement la chaleur absorbée.

La pureté des substances utilisées était comprise entre 99,0 et 99,9%. La comparaison des indices de réfraction avec ceux qui sont portés dans les tables de constantes [10] est satisfaisante.

Les spectres IR. sont semblables aux spectres de référence. Chacune des substances a été agitée avec du mercure pendant 24 h sans qu'un précipité ait pu être constaté. Ce traitement est sans aucune influence sur les chaleurs de mélange. La solubilité des hydrocarbures dans le mercure est de l'ordre de quelques micromoles par litre [11], donc négligeable. En revanche la solubilité de l'air [12] est de l'ordre de 200 mg par litre. Nous n'avons toutefois constaté aucune différence de chaleur de mélange entre les produits dégazéifiés ou saturés d'air.

Résultats expérimentaux. Dans les tableaux 1 à 4, nous avons porté, pour chaque température, les chaleurs  $\Delta H$  de formation d'une mole de solution en fonction de la fraction molaire x du composant le plus lourd. La masse des solutions obtenues après mélange était toujours comprise entre 2 et 3 g. La précision des résultats a été discutée précédemment [6] à propos du mélange hexadécanehexane déjà étudié par McGLASHAN [1]. Le même accord a été constaté pour le mélange dodécanehexane étudié par VAN DER WAALS [2] à 20°.

| <i>*</i> hexadécane      | △H<br>J/mole | $x_{	ext{hexad}\acute{e}cane}$ | $\Delta H$<br>J/mole | $x_{	ext{hexadécane}}$   | $\Delta H$<br>J/mole | <sup>x</sup> hexadécane  | $\Delta H$<br>J/mole |
|--------------------------|--------------|--------------------------------|----------------------|--------------------------|----------------------|--------------------------|----------------------|
| C <sub>16</sub> -méthyl- | 2            | C <sub>16</sub> -méthyl-       | 3                    | C <sub>16</sub> -diméthy | /1-2,2               | C <sub>16</sub> -diméthy | yl-2,3               |
| 0,1921                   | 117,9        | 0,2873                         | 157,6                | 0,3147                   | 221,6                | 0,4707                   | 203,6                |
| 0,2337                   | 137,8        | 0,3857                         | 176,1                | 0,4130                   | 252,0                | 0,4875                   | 202,0                |
| 0,2958                   | 161,9        | 0,4170                         | 174,9                | 0,4136                   | 247,0                | 0,5165                   | 202.6                |
| 0,3896                   | 185,7        | 0,4579                         | 186,3                | 0,4225                   | 249,5                | 0,5172                   | 209,2                |
| 0,4399                   | 189,4        | 0,5162                         | 185,7                | 0,4778                   | 251,3                | 0,5236                   | 202,7                |
| 0,4518                   | 192,1        | 0,5170                         | 186,5                | 0,5056                   | 254,9                | 0,5310                   | 200,1                |
| 0,5069                   | 194,8        | 0,5500                         | 184,0                | 0,5382                   | 253,9                |                          |                      |
| 0,5070                   | 186,1        | 0,5687                         | 189,1                | 0,5987                   | 243,3                |                          |                      |
| 0,5489                   | 191,2        | 0,6070                         | 177,2                | 0,6732                   | 221,1                |                          |                      |
| 0,5789                   | 188,3        | 0,6407                         | 168,4                |                          |                      |                          |                      |
| 0,6243                   | 178,9        | 0,7287                         | 146,0                |                          |                      |                          |                      |
| 0,6852                   | 164,8        |                                |                      |                          |                      |                          |                      |
| 0,7321                   | 147,7        |                                |                      |                          |                      |                          |                      |

Tableau 4. Systèmes hexadécane – méthyl-2-pentane, méthyl-3-pentane, diméthyl-2,2- et2,3-butane à 20°

Sur les figures 1 et 2,  $\Delta H$  est porté en fonction de la fraction molaire du composant le plus lourd. La relation

$$\Delta H = x_1 x_2 \left[ a + b(x_2 - x_1) + c(x_2 - x_1)^2 + \cdots \right].$$
<sup>(1)</sup>

s'adapte aux résultats expérimentaux d'une manière satisfaisante, déjà si on se contente des deux premiers termes. Les courbes ont été tracées de telle manière que l'écart quadratique moyen soit minimum. Les valeurs de b sont petites ce qui correspond à des courbes à peu près symétriques (tableau 5).

Afin de faciliter la discussion des résultats, nous rassemblons dans le tableau 6 les valeurs interpolées de  $\Delta H$  pour les mélanges équimoléculaires.

Discussion des résultats. MCGLASHAN, FRIEND, LARKIN & MAROUDAS [13] et plus tard HOLLEMAN [14] ont montré que, pour les mélanges de *n*-alcanes, la chaleur de formation ( $\Delta H > 0$ ) diminue lorsque la température s'élève, ou, ce qui revient au même, que  $\Delta C_p < 0$ . Au dessus d'une certaine température l'absorption de chaleur fait place à un dégagement ( $\Delta H < 0$ ). De même, nos mesures montrent que, pour les alcanes ramifiés on observe une diminution de la chaleur de formation avec l'élévation de la température mais l'absorption de chaleur est plus grande pour un hydrocarbure ramifié que pour un *n*-alcane. Dans les oléfines au contraire, la chaleur de formation est plus petite en présence de groupes méthyles formant ramification. La chaleur de

| Système                               | 10°   |    | 20°    |    | 30°   |    |
|---------------------------------------|-------|----|--------|----|-------|----|
|                                       | a     | b  | a      | b  | a     | b  |
| C <sub>12</sub> -hexane               | 234,3 | 9  | 181,3  | 1  | 123,4 | 1  |
| C <sub>16</sub> -méthyl-2-pentane     |       |    | 767,0  | 9  |       |    |
| C <sub>12</sub> -méthyl-2-pentane     | 410,1 | 26 | 344,0  | 0  | 264,7 | 0  |
| C <sub>18</sub> -méthyl-3-pentane     |       |    | 746,2  | 15 |       |    |
| C <sub>12</sub> -méthyl-3-pentane     | 411,2 | 9  | 331,5  | 15 | 247,2 | 20 |
| C <sub>16</sub> -diméthyl-2, 2-butane |       |    | 1021,0 | 33 |       |    |
| C <sub>12</sub> -diméthyl-2, 2-butane | 620,5 | 46 | 518,8  | 73 | 427,0 | 41 |
| C <sub>16</sub> -diméthyl-2, 3-butane |       |    | 815,0  | 0  |       |    |
| C <sub>13</sub> -diméthyl-2, 3-butane | 482,0 | 15 | 384,7  | 8  | 301,0 | 0  |
| C <sub>12</sub> -hexène-1             |       |    | 540,0  | 61 |       |    |
| C <sub>12</sub> -méthyl-2-pentène-1   | 559,4 | 8  | 482,2  | 0  | 403,0 | 13 |

Tableau 5. Constantes a et b de l'équation (1) pour les mélanges étudiés

Tableau 6. Chaleur de mélange. Mélanges équimoléculaires (valeurs interpolées)

| Système                               | $\Delta H_{10}$<br>J/mole | ${\it \Delta H_{20}} {\it J/mole}$ | $\Delta H_{30}$<br>J/mole |
|---------------------------------------|---------------------------|------------------------------------|---------------------------|
| C <sub>12</sub> -hexane               | 58,6                      | 45,3                               | 30,9                      |
| C <sub>16</sub> -méthyl-2-pentane     |                           | 191,8                              |                           |
| C <sub>12</sub> -méthyl-2-pentane     | 102,5                     | 86,0                               | 66,2                      |
| C <sub>16</sub> -méthyl-3-pentane     |                           | 186,6                              |                           |
| $C_{12}$ -méthyl-3-pentane            | 102,8                     | 82,9                               | 61,8                      |
| C <sub>1e</sub> -diméthyl-2, 2-butane |                           | 255,1                              |                           |
| C <sub>12</sub> -diméthyl-2, 2-butane | 155,1                     | 129,7                              | 106,7                     |
| C <sub>16</sub> -diméthyl-2, 3-butane |                           | 203,8                              |                           |
| C <sub>12</sub> -diméthyl-2, 3-butane | 120,5                     | 96,2                               | 75,3                      |
| $C_{12}$ -hexène-1                    |                           | 135,0                              |                           |
| C <sub>12</sub> -méthyl-2-pentène-1   | 139,8                     | 118,6                              | 100,7                     |

mélange ne varie d'ailleurs pas linéairement avec la température. En d'autres termes  $\Delta C_{b}$  n'est pas constant.

Examinant ces valeurs, nous avons constaté que les chaleurs de mélange des alcanes varient linéairement avec l'inverse de la température absolue aussi bien pour les n-alcanes que pour les alcanes ramifiés. Ceci ressort très nettement des droites de la figure 3.

Remarquons d'ailleurs que, en accord avec l'équation de CLAUSIUS-CLAPEVRON log  $p = (\Delta H_{vap}/2,30 R) 1/T$  + const. et, dans la mesure où la chaleur de vaporisation est indépendante de la température, on obtiendrait aussi une relation linéaire entre la chaleur de mélange et le logarithme de la pression de vapeur du composant le plus volatil (l'autre composant ayant une pression de vapeur négligeable) (Fig. 4). Comme le montre le tableau 7, l'extrapolation de la droite permet d'obtenir de bonnes valeurs des températures correspondant à une chaleur de mélange nulle. Il est donc permis, au moins pour des mélanges de *n*-alcanes, d'extrapoler les valeurs expérimentales à des températures pour lesquelles les mesures seraient difficiles, voire impossibles à réaliser.

A l'aide de la chaleur spécifique des composants purs [15] nous avons calculé la capacité calorifique moyenne  $C_{p}$  d'une mole de solution entre 10° et 20° et entre 20°



| Système                                               | $x_{ m bexane}$         | Temp. ( $\Delta H = 0$ )<br>expérimentale | Temp. ( $\Delta H = 0$ ) extrapolation |
|-------------------------------------------------------|-------------------------|-------------------------------------------|----------------------------------------|
| <br>$C_{16} + C_{6}$                                  | 0,50                    | $\simeq 65^{a}$                           | 63,7                                   |
| $C_{16} + C_6$                                        | 0,75                    | $\simeq 60^{\text{b}}$                    | 60,0                                   |
| $C_{24} + C_{8}$                                      | 0,67                    | $\simeq$ 76 <sup>b</sup> )                | 76,0                                   |
| $C_{12} + C_{6}$                                      | 0,50                    |                                           | 54,7                                   |
| $C_{24} + C_{B}$                                      | 0,50                    |                                           | 81,3                                   |
| $C_{24}^{24} + C_8^{0}$                               | 0,42 (Xc <sub>8</sub> ) | ≃ 96 <sup>b</sup> )                       | 95,5                                   |
| <br><sup>a</sup> ) Mc Glash<br><sup>b</sup> ) Hollema | hán [1]<br>n [14]       |                                           |                                        |

Tableau 7. Températures à chaleur de mélange nulle

| et | 30°  | pour   | les  | systèmes   | dodécane   | et   | resp.   | hexane,   | méthyl-2-pentane, | méthyl-3- |
|----|------|--------|------|------------|------------|------|---------|-----------|-------------------|-----------|
| pe | ntan | e, din | iéth | yl-2,2-but | ane et dim | iétł | iyl-2,3 | B-butane. |                   |           |

On a, en effet

$$C_{p \text{ mel.}} = x_1 C_{p_1} + x_2 C_{p_2} + \Delta C_{p \text{ mel.}}$$
  
où  $\Delta C_{p \text{ mel.}} = (\Delta H_{t_1} - \Delta H_{t_2}) / (t_1 - t_2)$ , et où  $C_{p_1}$  et  $C_{p_2}$ 

sont les capacités calorifiques molaires des liquides purs.

Les valeurs obtenues sont reportées sur le tableau 8.

Elles doivent être considérées comme plus précises que celles que l'on peut déduire de la mesure directe des chaleurs spécifiques des mélanges.

Tableau 8. Capacité calorifique moyenne Cp par mole de solution

| Système                               | 15°                                    |                                | 25°                                    |                                |
|---------------------------------------|----------------------------------------|--------------------------------|----------------------------------------|--------------------------------|
|                                       | $-\Delta C_{p \text{ mel.}}$<br>J/mole | $C_{p \text{ mel.}}$<br>J/mole | $-\Delta C_{p \text{ mel.}}$<br>J/mole | $C_{p \text{ mel.}}$<br>J/mole |
| C <sub>12</sub> -hexane               | 1,3                                    | 280,4                          | 1,4                                    | 283,9                          |
| C <sub>12</sub> -méthyl-2-pentane     | 1,6                                    | 278,9                          | 2,0                                    | 282,7                          |
| C <sub>12</sub> -méthyl-3-pentane     | 2,0                                    | 277,2                          | 2,1                                    | 281,1                          |
| C <sub>12</sub> -diméthyl-2, 2-butane | 2,5                                    | 275,7                          | 2,3                                    | 279,8                          |
| C <sub>12</sub> -diméthyl-2, 3-butane | 2,4                                    | 275,7                          | 2,1                                    | 280,1                          |

Nous n'avons pas pu comparer nos résultats avec l'énergie de mélange prévue par la théorie de SCATCHARD-HILDEBRAND [16]. En effet, tous les mélanges sont accompagnés d'une diminution de volume, et par conséquent  $\Delta H$  doit être différent de  $\Delta U$ .

Une analyse détaillée des résultats expérimentaux rend nécessaire les mesures de volumes de mélange. Nous nous proposons de poursuivre des recherches dans ce sens.

## SUMMARY

The following heats of mixing have been measured: the five isomers of hexane with *n*-dodecane at  $10^{\circ}$ ,  $20^{\circ}$  and  $30^{\circ}$ C, and with *n*-hexadecane at  $20^{\circ}$ C, as well as the systems dodecane-hexene-1 at  $20^{\circ}$ C, and dodecane-methyl-2-pentene-1 at  $10^{\circ}$   $20^{\circ}$  and  $30^{\circ}$ C.

In every case the mixing is accompanied by heat absorbtion which increases with the number of  $CH_3$  groups of the mixed isomer.

The values of  $\Delta H$  are maximum for nearly equimolecular mixtures. The most striking feature of the results is the large negative temperature coefficient of  $\Delta H$ , which is proportional to 1/T.

Measurements of the system n-hexane-n-dodecane at 20 °C show a satisfactory agreement with the data obtained previously for the same system by VAN DER WAALS and HERMANS.

Laboratoire de Chimie Physique Université de Neuchâtel

## BIBLIOGRAPHIE

- [1] M. L. MCGLASHAN, Trans. Faraday Soc., 57, 581 (1961).
- [2] J. H. VAN DER WAALS & J. J. HERMANS, Rec. Trav. chim. Pays-Bas 69, 949 (1950).
- [3] M L. McGlashan, Trans. Faraday Soc., 57, 907 (1961).
- [4] J. H. VAN DER WAALS, Rec. Trav. chim. Pays Bas, 70, 101 (1951).
- [5] V. MATHOT, Bull. Soc. chim. belges, 59, 111 (1950).
- [6] J. G. FERNÁNDEZ-GARCÍA & CH. G. BOISSONNAS, Helv. 49, 854 (1966).
- [7] J. N. BRÖNSTED & J. KOEFOED, Kgl. Danske Vidensk. Selsk., 22, (No. 17) (1946).
- [8] H. F. STOECKLI, J. G. FERNÁNDEZ-GARCÍA & CH. G. BOISSONNAS, Trans. Faraday Soc., 62, 3044 (1966).
- [9] J. G. FERNÁNDEZ-GARCÍA, H. F. STOECKLI & CH. G. BOISSONNAS, Helv., 49, 1984 (1966).
- [10] G. E. GLOFF, "Physical Constants of Hydrocarbons", Vol. 1, Monographic Series, Amer. chem. Soc.
- [11] R. R. KUNTZ & G. J. MAINS, J. physic. Chemistry, 68, 408 (1964).
- [12] A. SEIDELL, «Solubilities of Inorganic and Metal Organic Compounds», Van Nostrand 1940.
- [13] J. A. FRIEND, J. A. LARKIN, A. MAROUDAS & M. L. MCGLASHAN, Nature 198, Nr. 4881, 683 (1963).
- [14] TH. HOLLEMAN, Physica, 31, 49 (1965).
- [15] D. R. DOUSLIN & H. M. HUFFMAN, J. Amer. chem. Soc., 68, 1704 (1946); H. L. FINKE, M. E. GROSS, G. WADDIGTON & H. M. HUFFMAN, *ibid.* 76, 333 (1954); «Landolt-Börnstein, Tabellen, 6e éd., II, 4, p. 522, 524.».
- [16] H. HILDEBRAND & R. L. SCOTT, «Regular Solutions», Prentice-Hall, Inc. (N.J.) (1962).